Persons Aged over 10 by Sex, Age and 1911 Occupational Order

No chart.

No chart.

Data for 1911:

Sex = Male 1911 Occupation Tables Age Groups
1911 Occupational Classification 10-12 13 14 15 16 17 18 19 20-24 25-34 35-44 45-54 55-64 65 up
Government 0 Show data context 0 Show data context 47 Show data context 71 Show data context 65 Show data context 43 Show data context 38 Show data context 44 Show data context 304 Show data context 729 Show data context 568 Show data context 341 Show data context 109 Show data context 20 Show data context
Defence 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 6 Show data context 4 Show data context 6 Show data context 53 Show data context 89 Show data context 50 Show data context 29 Show data context 28 Show data context 29 Show data context
Professional Occupations 0 Show data context 0 Show data context 17 Show data context 35 Show data context 44 Show data context 42 Show data context 50 Show data context 37 Show data context 313 Show data context 724 Show data context 653 Show data context 521 Show data context 227 Show data context 111 Show data context
Domestic Services 0 Show data context 1 Show data context 30 Show data context 27 Show data context 20 Show data context 33 Show data context 44 Show data context 39 Show data context 226 Show data context 515 Show data context 375 Show data context 273 Show data context 151 Show data context 72 Show data context
Commercial Occupations 0 Show data context 1 Show data context 60 Show data context 144 Show data context 187 Show data context 165 Show data context 155 Show data context 185 Show data context 753 Show data context 1,233 Show data context 794 Show data context 502 Show data context 237 Show data context 76 Show data context
Transport 21 Show data context 42 Show data context 357 Show data context 392 Show data context 369 Show data context 233 Show data context 191 Show data context 159 Show data context 833 Show data context 2,226 Show data context 1,814 Show data context 1,166 Show data context 524 Show data context 138 Show data context
Agriculture 0 Show data context 0 Show data context 1 Show data context 2 Show data context 4 Show data context 4 Show data context 3 Show data context 7 Show data context 30 Show data context 63 Show data context 49 Show data context 66 Show data context 40 Show data context 33 Show data context
Mines and Quarries
Metals, Machines 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 3 Show data context 0 Show data context 1 Show data context 7 Show data context 25 Show data context 25 Show data context 20 Show data context 13 Show data context 10 Show data context
Jewelry, Instruments 0 Show data context 0 Show data context 44 Show data context 61 Show data context 101 Show data context 97 Show data context 95 Show data context 125 Show data context 612 Show data context 1,252 Show data context 745 Show data context 460 Show data context 233 Show data context 79 Show data context
Building 0 Show data context 0 Show data context 3 Show data context 12 Show data context 18 Show data context 14 Show data context 19 Show data context 15 Show data context 95 Show data context 153 Show data context 138 Show data context 77 Show data context 52 Show data context 15 Show data context
Wood, Furniture 0 Show data context 0 Show data context 15 Show data context 36 Show data context 42 Show data context 77 Show data context 82 Show data context 81 Show data context 555 Show data context 1,721 Show data context 1,718 Show data context 1,408 Show data context 830 Show data context 279 Show data context
Brick, Cement 0 Show data context 0 Show data context 8 Show data context 24 Show data context 33 Show data context 37 Show data context 27 Show data context 32 Show data context 164 Show data context 374 Show data context 292 Show data context 228 Show data context 129 Show data context 49 Show data context
Chemicals 0 Show data context 0 Show data context 4 Show data context 4 Show data context 7 Show data context 6 Show data context 8 Show data context 6 Show data context 15 Show data context 49 Show data context 27 Show data context 26 Show data context 18 Show data context 5 Show data context
Skins, Leather 0 Show data context 0 Show data context 2 Show data context 12 Show data context 5 Show data context 12 Show data context 12 Show data context 10 Show data context 51 Show data context 121 Show data context 89 Show data context 49 Show data context 25 Show data context 10 Show data context
Paper, Prints 0 Show data context 0 Show data context 2 Show data context 3 Show data context 3 Show data context 2 Show data context 3 Show data context 3 Show data context 16 Show data context 38 Show data context 48 Show data context 45 Show data context 21 Show data context 4 Show data context
Textile Fabrics 1 Show data context 0 Show data context 27 Show data context 38 Show data context 48 Show data context 60 Show data context 40 Show data context 50 Show data context 139 Show data context 303 Show data context 195 Show data context 122 Show data context 67 Show data context 21 Show data context
Dress 0 Show data context 0 Show data context 5 Show data context 8 Show data context 14 Show data context 12 Show data context 22 Show data context 15 Show data context 86 Show data context 144 Show data context 109 Show data context 63 Show data context 35 Show data context 15 Show data context
Food, Drink 0 Show data context 2 Show data context 16 Show data context 38 Show data context 43 Show data context 43 Show data context 46 Show data context 60 Show data context 196 Show data context 423 Show data context 378 Show data context 267 Show data context 136 Show data context 82 Show data context
Gas, Water 0 Show data context 0 Show data context 49 Show data context 88 Show data context 175 Show data context 216 Show data context 162 Show data context 193 Show data context 959 Show data context 1,672 Show data context 1,312 Show data context 713 Show data context 307 Show data context 89 Show data context
Other and Undefined 0 Show data context 0 Show data context 2 Show data context 2 Show data context 6 Show data context 5 Show data context 9 Show data context 12 Show data context 62 Show data context 224 Show data context 277 Show data context 146 Show data context 87 Show data context 17 Show data context
Unoccupied 23 Show data context 25 Show data context 36 Show data context 36 Show data context 44 Show data context 61 Show data context 50 Show data context 64 Show data context 292 Show data context 616 Show data context 490 Show data context 403 Show data context 238 Show data context 80 Show data context
Sex = Female 1911 Occupation Tables Age Groups
1911 Occupational Classification 10-12 13 14 15 16 17 18 19 20-24 25-34 35-44 45-54 55-64 65 up
Government 0 Show data context 0 Show data context 0 Show data context 0 Show data context 4 Show data context 13 Show data context 15 Show data context 20 Show data context 128 Show data context 133 Show data context 47 Show data context 31 Show data context 20 Show data context 1 Show data context
Defence
Professional Occupations 0 Show data context 1 Show data context 6 Show data context 6 Show data context 13 Show data context 24 Show data context 30 Show data context 35 Show data context 374 Show data context 663 Show data context 453 Show data context 265 Show data context 141 Show data context 43 Show data context
Domestic Services 0 Show data context 2 Show data context 181 Show data context 312 Show data context 372 Show data context 411 Show data context 455 Show data context 414 Show data context 1,813 Show data context 1,870 Show data context 1,254 Show data context 990 Show data context 622 Show data context 209 Show data context
Commercial Occupations 0 Show data context 0 Show data context 6 Show data context 57 Show data context 81 Show data context 92 Show data context 107 Show data context 98 Show data context 385 Show data context 306 Show data context 75 Show data context 41 Show data context 7 Show data context 4 Show data context
Transport 0 Show data context 0 Show data context 5 Show data context 5 Show data context 7 Show data context 6 Show data context 6 Show data context 7 Show data context 28 Show data context 21 Show data context 3 Show data context 8 Show data context 3 Show data context 2 Show data context
Agriculture 0 Show data context 0 Show data context 0 Show data context 1 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 1 Show data context 0 Show data context 1 Show data context 2 Show data context
Mines and Quarries
Metals, Machines 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 0 Show data context 0 Show data context 0 Show data context
Jewelry, Instruments 0 Show data context 0 Show data context 25 Show data context 37 Show data context 45 Show data context 38 Show data context 44 Show data context 16 Show data context 82 Show data context 25 Show data context 7 Show data context 3 Show data context 1 Show data context 0 Show data context
Building 0 Show data context 0 Show data context 1 Show data context 4 Show data context 1 Show data context 3 Show data context 4 Show data context 2 Show data context 13 Show data context 19 Show data context 5 Show data context 3 Show data context 2 Show data context 0 Show data context
Wood, Furniture 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 1 Show data context 0 Show data context 0 Show data context
Brick, Cement 0 Show data context 0 Show data context 3 Show data context 8 Show data context 11 Show data context 5 Show data context 2 Show data context 8 Show data context 39 Show data context 31 Show data context 28 Show data context 24 Show data context 12 Show data context 8 Show data context
Chemicals 0 Show data context 0 Show data context 3 Show data context 2 Show data context 1 Show data context 1 Show data context 1 Show data context 1 Show data context 20 Show data context 8 Show data context 4 Show data context 2 Show data context 1 Show data context 0 Show data context
Skins, Leather 0 Show data context 0 Show data context 0 Show data context 2 Show data context 4 Show data context 6 Show data context 4 Show data context 5 Show data context 19 Show data context 9 Show data context 6 Show data context 2 Show data context 0 Show data context 0 Show data context
Paper, Prints 0 Show data context 0 Show data context 0 Show data context 3 Show data context 2 Show data context 2 Show data context 3 Show data context 2 Show data context 16 Show data context 19 Show data context 5 Show data context 3 Show data context 5 Show data context 1 Show data context
Textile Fabrics 0 Show data context 0 Show data context 12 Show data context 24 Show data context 29 Show data context 27 Show data context 26 Show data context 19 Show data context 84 Show data context 63 Show data context 28 Show data context 19 Show data context 12 Show data context 6 Show data context
Dress 0 Show data context 0 Show data context 8 Show data context 24 Show data context 37 Show data context 28 Show data context 34 Show data context 35 Show data context 144 Show data context 149 Show data context 58 Show data context 31 Show data context 14 Show data context 2 Show data context
Food, Drink 0 Show data context 0 Show data context 120 Show data context 231 Show data context 220 Show data context 229 Show data context 253 Show data context 220 Show data context 951 Show data context 924 Show data context 464 Show data context 345 Show data context 196 Show data context 93 Show data context
Gas, Water 0 Show data context 0 Show data context 21 Show data context 53 Show data context 67 Show data context 85 Show data context 108 Show data context 111 Show data context 467 Show data context 461 Show data context 292 Show data context 210 Show data context 103 Show data context 50 Show data context
Other and Undefined 0 Show data context 0 Show data context 0 Show data context 0 Show data context 1 Show data context 0 Show data context 0 Show data context 0 Show data context 0 Show data context 3 Show data context 1 Show data context 1 Show data context 0 Show data context 0 Show data context
Unoccupied 0 Show data context 0 Show data context 8 Show data context 19 Show data context 29 Show data context 26 Show data context 30 Show data context 20 Show data context 94 Show data context 107 Show data context 61 Show data context 22 Show data context 17 Show data context 7 Show data context
nCube definition Click on the triangles for all about a particular number
Date: Source:
1911 1911 Census of England and Wales, Occupations Vol 2, Table 13 , 'Occupations (Condensed List) of Males and Females at ages 10 years and upwards; in England and Wales, the aggregates of Urban and Rural Districts respectively in England and Wales, Administrative Counties, County Boroughs, Metropolitan Boroughs, Urban Districts of which the population exceeded 50,000 persons, and the aggregates of Rural Districts in Administrative Counties, 1911'

This website exists to help people doing personal research projects on particular areas within a locality. So long as you are using our data for only a small number of units, you are not making money out of what you are doing, and you are not systematically re-publishing our data, you do not need to request permission from us, but you do need to acknowledge us as your source with the wording:

"This work is based on data provided through www.VisionofBritain.org.uk and uses historical material which is copyright of the Great Britain Historical GIS Project and the University of Portsmouth".

Where the above statement is included in a web page or similar online resource, the reference to "www.VisionofBritain.org.uk" must be a working hyperlink.

nCube definition


All males and females at ages 10 years and upwards, categorised by gender, by 14 age groups, and by 23 occupational 'Orders'. This is the information provided by the 1911 Census's Occupation Tables. The occupational categories include Order 23, 'Without Specified Occupations or Unoccupied'.

How to reference this page:

GB Historical GIS / University of Portsmouth, Fulham MetB through time | Industry Statistics | Persons Aged over 10 by Sex, Age and 1911 Occupational Order, A Vision of Britain through Time.

URL: http://www.visionofbritain.org.uk/unit/10042150/cube/OCC_ORD1911_AGESEX

Date accessed: 10th August 2020